On Formally Self-dual Boolean Functions in 2, 4 and 6 Variables
نویسندگان
چکیده
In this paper, we classify all formally self-dual Boolean functions and self-dual bent functions under the action of the extended symmetric group in 2, 4 variables, and give a lower bound for the number of non-equivalent functions in 6 variables. There are exactly 2, 91 (1, 3 respectively) and at least 5535376 representatives from equivalence class of formally self-dual Boolean functions (self-dual bent functions respectively).
منابع مشابه
Self-dual bent functions
A bent function is called self-dual if it is equal to its dual. It is called anti-self-dual if it is equal to the complement of its dual. A spectral characterization in terms of the Rayleigh quotient of the Sylvester Hadamard matrix is derived. Bounds on the Rayleigh quotient are given for Boolean functions in an odd number of variables. An efficient search algorithm based on the spectrum of th...
متن کاملSpectral Orbits and Peak-to-Average Power Ratio of Boolean Functions with Respect to the {I, H, N}n Transform
We enumerate the inequivalent self-dual additive codes over GF(4) of blocklength n, thereby extending the sequence A090899 in The On-Line Encyclopedia of Integer Sequences from n = 9 to n = 12. These codes have a well-known interpretation as quantum codes. They can also be represented by graphs, where a simple graph operation generates the orbits of equivalent codes. We highlight the regularity...
متن کاملThe classification of complementary information set codes of lengths 14 and 16
In the paper " A new class of codes for Boolean masking of cryptographic computations , " Carlet, Gaborit, Kim, and Solé defined a new class of rate one-half binary codes called complementary information set (or CIS) codes. The authors then classified all CIS codes of length less than or equal to 12. CIS codes have relations to classical Coding Theory as they are a generalization of self-dual c...
متن کاملA Fast and Self-Repairing Genetic Programming Designer for Logic Circuits
Usually, important parameters in the design and implementation of combinational logic circuits are the number of gates, transistors, and the levels used in the design of the circuit. In this regard, various evolutionary paradigms with different competency have recently been introduced. However, while being advantageous, evolutionary paradigms also have some limitations including: a) lack of con...
متن کاملPolynomial Time Algorithms for some Self-Duality Problems
Consider the problem of deciding whether a Boolean formula f is self-dual, i.e. f is logically equivalent to its dual formula f d , deened by f d (x) = f (x). This problem is a well-studied problem in several areas like theory of coteries, database theory, hypergraph theory or computational learning theory. In this paper we exhibit polynomial time algorithms for testing self-duality for several...
متن کامل